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ABSTRACT

Experience has indicated that certain complex systems when
first put into operation are subject to a breaking-in period. During
this phase failures of the system occur at a relatively high rate,
but as time wears on, this high failure rate declines steadily until
a stable value is reached. This marks the beginning of what has been
called the effective life of the system and it would be of obvious
practical value to have a statistical method for deciding when a system
has entered this period of stable performance.

This memorandum presents some axioms that describe this
breaking-in phenomena and explores some of their elementary consequences.
The failure rate function is described and some estimates for 1t pre-
sented. These are in turn used to delineate a procedure for estimating
the time of the stable period's inception and the mean time between

failures for this period.
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TECHNICAL MEMORANDUM

1. INTRODUCTION

Let Sk denote the time at which the k-th failure of a

system occurs, where time is measured from the system's installa-

tion, and repair times are neglected. Then Sk = X1 + ... + Xk’

for k=1,2,..., Wwhere Xk is trhe time between fallures k-1 and k,

and the Xk are assumed to be independent positive random variables.

Let N(t) be the number of failures occurring in the
interval (0,t). Thus N(t) = k if and only if Sk <t s Sk+1 and
N(t) 2 k if and only if S, < t. Now let H(t) = E(N(t)), the
mathematical expectation of N(t) and set h(t) = H'(t) assuming
this derivative exists for all t > 0, N, H, and h will be called
respectively, the failure function, mean failure function and
failure rate.¥*

If the system had no breaking-in period then we might

assume that the Xk were identically distributed so that Sk would

be a renewal process (see [2]). In this case it is known that

lim H(t)/t = 1/u and that lim h(t) = 1/u where u = E(X;). We can-
tox tro

not, of course, assume that Sk is a renewal process but we would

like to conclude that H(t) ~ t/u and h(t) > 1/u where u is the mean
value of times between fallures when the system has reached its
stable period. Conditions ensuring this convergence are discussed
in the next section.

In section 3 we discuss methods for estimating the
failure rate h(t) given nothing but the times at which failures
have occurred up to some time T, that 1s, given N(t), 0 s t < T.

If we know that h(t) happens to be decreasing then, as will be
seen, such an estimate can be significantly improved by a smoothing
operation.

¥The term failure rate has another standard use which must be
distinguished from ours.
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Finally 3in cases where h(t) converges decreasingly to
a limit 1/u > 0 we make some comments on the problem of estimating
u and other parameters of interest, for example, t¥(e), the smallest
value such that for all t > t*¥, h(t) - 1/u < e.

2. CONVERGENCE OF THE MEAN FAILURE FUNCTION

In this section we will formulate conditions on the
Xi so that the process Sn will conform to our intuitive idea of

the breaking-in process. We will then see that these conditions

imply that the mean fallure function H(t) is asymptotically equal
to t/u where 0 < y < » and u can be looked on as the "asymptotic

mean time between failures."

To begin with, we should like X
be larger than X

1 to have a tendency to

1-1 since the times between fallures are generally

getting longer. Therefore we take as our basic assumption--
(A) - Xy 1s stochastically larger than X; ;, that is,
P(Xy » a) 2 P(X;_; > a) for all a. If X is stochastically
larger than Y we write X 2 Y.
The following theorem provides some insight into this definition.

Theorem 1 Let X and Y be positive random variables with distribution
functions F and G. Then,

(1) X 2 Y if and only if F(a) < G(a) for all a
(11) 1if X 3 Y then E(X) 2 E(Y)
(ii1) 4if X 2 Y and X and Y are independent then P(X>Y) 2 1/2.
Proof (i) follows directly from the definition.

To prove (ii) we first note that

o

f x dF(x) = —f x d(1-F(x)) = - x(1-F(x)) +[ (1-F(x))dx
0 0 0 0

(1-F(x))dx

E(X)
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using integration by parts at the next to last step. Note that

x dF(y) 5[ y dF(y) » 0
X

00 o0

x(1-F(x)) = x[ dr(y) =[
X X

as x =+ <, Thus

oo

E(X) =f (1-F(x))dx 3[ (1-G(x))dx = E(Y) ,
0 0

using the corresponding formula for Y and G and part (i).

As for (iii), first suppose G 1s continuous.

P(X>Y) =[ P(X>y|Y=y) d G(y)
0

=[ P(X>y)d G(y) =[ (1-F(y)) a G(y)
0 0

roo L.
j (1-G(y)) d a(y) = 1 -j G(y) 4 G(y)
0

0
1 - G(y)G(y)J +[ G(y)da(y) =[ G(y) 4 G(y) ,
0 0 0

once again using integration by parts. But 1f

1 - ]r G(y) d G(y) = jr G(y) d G(y)
0 0

then the latter quantity equals 1/2, so that

v
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P(X>Y) > jf G(y) a4 G(y) = 1/2 .
0

An approximation argument gives the same result when G is not
assumed to be continuous.

The second condition which must be placed on the
distribution of the X1 is that their growth be bounded in such

a way that the failure process eventually stabilizes, or con-
verges, 1n some sense, to a random variable X whose distribution
characterizes the way failures occur during the most effective
phase of the system's operation. Thus we make the assumption--

(B) - There exists a random variable Y with finite mean

a such that Xi ~ Y for all 1.

Without some assumption like (B) the times between
failures might go on increasing without bound, which is certainly
not the case in the systems we are interested in studying.
Condition (B) is somewhat stronger than a cursory glance might
indicate, if (A) 1is also assumed to hold, as the following theorem
shows.

Theorem 2 Let Xi be a sequence of random variables satisfying

(A) and (B). Then there exists a random variable X with finite
mean u such that X, & X, Yi converges in distribution to X, and

i
E(Xi) > U,

Proof Let F, be the distribution of X let Y be as in (B) and

i i?
let G be the distribution of Y. Then the characteristic function
¢n of Xn is—-
_ itx
¢n(t) = Jr e da Fn(x)
0
= - | &M a -F (x)

oo

= - eitx(l—Fn(x)) +j (l—Fn(x))iteitx dx
0 0

Q0

1+ 1t (1-F, (x)) It gy
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The sequence l-Fn(x) is Increasing and bounded above

by 1-G(x). Therefore lim 1-F (x) = 1-F(x) exists for all x.

nre
We show that F(x) is a distribution function by Levy's Continuity
Theorem (see [4, p. 191]), that is, we show that ¢n(t) convewrges
to a function which is continuous at t=0.

1im ¢_(t) = lim (1+1t jr (1~Fn(x))eitxdx)
0

n->o N>

T o0

1+ it‘/ (1-F(x)) ei%* ax ,
0

and the limit exists. The interchange of 1limit and integration
is justified above by Lebesgue's Dominated Convergence Theorem

and the fact that |(1-F_(x))e'™| = 1-F_(x) < 1-6(x), the latter

function being integrable. We now must show that
1+ it ]' (1-F(x)) eltxdx is a continuous function of t, at t=0.
0

But the integral .is obviously bounded in a neighborhood of t=0,
so that the whole function is continuous at 0. Thus Xn converges
in distribution to X, and the other assertions of the theorem are
obvious consequences of the definitions of X and F.

We are now in a position to show that 1f the sequence
{Xn} satisfies (A) and (B) then H(t) ~ t/u. To do this we need

the following result due to Kawata [3] and Smith [T7].

Theorem 3 Let {Xn} be a sequence of non-negative independent
random varlables such that

N
(i)%z E(Xn)+u,0<u<oo
n=1
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(1i) for every e > 0,

® n

1

£ ) (R (x))ax » 0 as n > =.
ne k=1

Then 1im H(t)/t = 1/u .

t—»oo

Now we may state the main result of this section.

Theorem 4 Let {Xn} be a sequence of independent non-negative
random variables satisfying (A) and (B). Then there exists a
random variable X with mean u such that

(1) X, converges in distribution to X

(i1) 1im H(t)/t = 1/u .
tr
Proof (i) has already been established. Let v, = E(Xn). Then

Hpy 7 Mo also by Theorem 2. But this implies that also

n

% ?ﬁ M ™ M- Let Fk and F be the distribution functions of
k=1

Xk and X. Then,

s

s 00 n n o
C 1T (-F (x))ax £ 2] [ (1-F(x))dx > 0 as n » =.
Jne k=1 k=1 Jne

Thus both conditions of Theorem 3 are satisfied and hence the
theorem is proven.

3. ESTIMATION OF THE FAILURE RATE

As above 1t 1is assumed that the times between failures,

X are non-negative independent random variables, stochastically

n’
increasing, and converging in distribution to a random variable
X with finite mean u. Then it was shown in section 2 that
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(*) H(t) = E(N(t)) ~ t/u

where N(t) 1s the number of failures occurring in (0,t). Clearly

(*#) is not of itself sufficient’ to conclude that the failure

rate h(t) = H'(t) » 1/p as t+=, but in the context of other renewal
theorems it seems to be only a slight additional restriction to
assume that, in fact, h(t) converges to 1/u.

Moreover, in the type of reliability problem being
treated here, there is strong empirical evidence to suggest that
h(t) is a decreasing function. The conditions (A) and (B) of
section 2 are certainly not enough to guarantee this so the fol-
lowing additional assumption is introduced--

(C) - The failure rate h(t) is a decreasing function such
that h(t) > 1/p as ts=,

A host of statistical problems concerning h now pose
themselves: given N(t) for 0 < t < T, estimate

(i) h(t) for 0 < t < 7
(11) n(T)

(111) t¥(e), the smallest number such that for all t>t*,
h(t) - 1/u < €.

The practical value of estimates for these quantities
is quite obvious. The estimators to be presented here are of an
ad hoc nature, however, and nothing is known of their moments or
distributions, asymptotically or otherwise. This is a result of
the great generallty of the problem as posed here; on the other
hand, if some stringent restrictions are placed on the distribu-
tions of the Xn some more detailed knowledge of the estimators

might be had but this kind of study will be postponed for now.

3.1 A Class of Estimators for h(t)

We wish to estimate the function h(t) = H'(t) where
H(t) = E(N(t)), given N(t) for 0 < t < T. N(t) is an unbiased
estimate for H(t) and so we might attempt differentiating N(t)
to get an estimate for h. Unfortunately N(t) is a step function

+Consider, e.g., the function H(t) = t + cos t.
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and its derivative equals 0 everywhere it exlists so that this
procedure is not very promising. We may however borrow a tech-
nique from time seriles analysis for gettlng around this diffi-
culty (see especially [6] for a discussion of the way in which
spectral density estimation applies to probability density
estimation).

Let K be a function satisfying

K > 0, K(-x) = K(x), K(x)dx = 1

w00

and 1im x K(x) = 0. Then we set
X+

hy(t) =[ K(x-t) d N(x) = (KxN) (t)
0

and take ﬁK as an estimate of h. K is called the kernel of this
transformation, and ﬁK may be called the convolution of K with N.

The following example will illustrate how the convolution K#N
provides an estimate of H' (See [6] for a proof that K%#N converges
to H', if N is a sample distribution function, as the size of the
sample n increases and K is allowed to depend on n.)

Take A > 0 and let

K(x) = 1/a , |x| £ a/2

= 0 , | x| > az2
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j{ K(x~-t) 4 N(x)
0

=]

\O
I

Then ﬁK(t)

= O K(S,-t) {N(s) - N(5,7)}
k=1
k=1
= 3 * (number of terms 5, within a/2 of t)
= %-(N(t+A/2) - N(t-8/2))
= % « (N(t+a/2)-N(t)) + % + (N(t)-N(t-8/2))
Thus
ER (t) = 3 - (H(t+4/2)-H(t)) + T - (H(t)-H(t-2/2))
and

Eﬁk(t) 2 H'(t)

The usual procedure in problems of this sort is to
perform several different transformatlions using a variety of
kernels K since some are more sensitive to certain kinds of
tremors and wiggles than others and so it 1s best to try a
number of them. Here are three examples and the literature of
time series analysis abounds with others.

Example 1

K (x) = 1/a for |x| < 8/2 1/

0 for |x| > a/2 1 |

L |
-K/2 A/2
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Example 2

Ky(x) = %(I—IZX/AI), | x| = a/2

2/A
=0 , |x| > a/2
-2/2 6/2
E 1
xample 3 P
7 \\‘
K3(x) = %(l+cos n x), |x| £ 1/n i \
PN (T
=0 s x| > 1/n X \
-1/n 1/n

Note that each Ki depends on a parameter A or n,

which may be varied so as to emphasize local behavior by taking
A > 0 small or n large.

Since h is assumed to be a decreasing function it is
entirely reasonble to restrict attention to those estimates of
h which are themselves decreasing. This can be accomplished by

~

smoothing any of the estimates hk defined above in a manner to

be described presently. The smoothed estimate can be shown to
be a maximum likelihood estimate under certaln restrictive
circumstances (see [1] and [5]) but there is no need to pursue
this fact here.

Thus let h be a given estimate of h defined on [0,T].
We construct a new estimate h based on h as follows: Let h
coincide with h until the first point, say to, at which h

increases. Then redefine h to be the average value of h on the
intervals to the left and right of to . Repeat this, process as
often as 1s necessary until h is decreasing on the interval
[0,t,], and then proceed to the next point of increase of h.
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For example, suppose h has the values shown in

Figure 1. Then Figure 2 shows the smoothed estimate h.

ht) 10
-9
8 I
6
~h.h
‘ 4
3
A L A o e t
Figure 1
h(t)
{ 10
8.5
1
5.2
3
i 1 1 i i . i I t
Figure 2

One of the principal virtues of the smoothed estimate
is, of course, that it gives a better picture of the trend in
the failure rate. As with all smoothing operations it 1lrons out
or dissipates chance fluctuations from the dominant trends. This
particular smoothing will be used again in the next subsection.
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3.2 Another Estimator for h(t)

The statistic to be described here is the one studied
in [1] where it is mentioned as being a maximum likelihood esti-
mator for a function closely related to our h(t) but with certain
restrictions on the Xn. These conditions are a little unnatural

and almost impossible to verify but that should not deter us from
trying out the estimator and seeing how it behaves in this more
general problem.

Let Sn and Xn be as above, for n=1l,...,N. Then let

h*¥(t) = l/Xn+1 for S, <t g Sn+1 and for n=0,1,..., N-1.

The similarity of h* to the estimates ﬁk of 3.1 should
be noted. Consider a kernal K like K1 of 3.1, except that the

gquantity A& i1s allowed to vary in such a way that the interval
considered always -contalns one and only one fallure point Sk

and so that A = Sk+1 - Sk = Xk' Then

h, (t) = % . (# of failures in interval of length 4
about t)
= 1 . = = *
=2+ 1=1/% =h*®) 1f S <t < S,

The estimate h¥ must be smoothed so that it becomes a
decreasing function and the following averaging 1is recommended in
[(1]: 1f l/Xk < l/Xk+l so that h* must be smoothed on the interval

* =
(S,_1s Spyp] then let h* = 2/(X +X, ) there.

A comparison of the estimates ﬁk and h¥* should really

awalt some extensive testing but even at this vantage point some
remarks are called for. A small scale trial of some fictional
data seems to indicate that h* gives a smoother more easily inter-
preted graph and would be preferable over hk for that reason if

this phenomena persists. There 1s also the fact that h* is much
easlier to compute which may be an overriding consideration. It
should also be mentioned that for visual enhancement, a piecewilse
linear graph 1is easier to look at than a step-function despite
whatever mathematically optimal properties the latter has, and

so one should not hesitate to "connect the dots" when attempting
a visual evaluation.
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4, STATISTICAL TESTS

In this section we assume that conditions (A), (B)
and (C) are all fulfilled and comment on some statistical prob-
lems of obvious interest. In each case assume as given the
failure data up to time T, that is the function N(t),

0 <t < T.

Consider first the problem of estimating u. It seems
clear intuitively that for the smoothed estimates h and h¥*, the
values h(T) and h*(T) converge to 1/u almost surely, although no
proof will be offered for this conjecture at this time. Thus
1/h(T) or 1/h*(T) seems to be a reasonable estimate for u at
time T. The speed of convergence will depend on how long the
breaking-in process persists, and, in the case of h, to what
extent recent data get emphasized. Once more it must be empha-
sized that for the general problem considered here it is impos-
sible to give any more precise information on the moments or
distributions of these estimates.

Another problem of great interest is of a decision
theoretic nature: has, as of time T, the breaking-in process
ended? If the function h(t) continues to decrease, for all t,

to its limit 1/u, e.g., h(t) = 1/u + e C, then of course the
breaking-in never really ends so this question must be phrased
a little more delicately. It can be done as follows. Let e > 0
be chosen according to some a priorl standards. Then we agree
to say that breaking-in has ended at the point t¥ = t¥*(¢) at
which h(t) first comes within ¢ of its eventual limit 1/u,
Thus t¥(e) = min {h(t) - 1/u < e}.

t

Suppose h¥* is the estimate of h being used. Then
an obvious estimate for t¥*(e) would be

t*¥ = t*¥(e,T) = min {h*(t)-h¥*(T) < e} .
t

Thus E* is the smallest wvalue of t such that the variation of
h¥ between t and the present T is not more than e.

When T < t*, that is, breaking-in is still in progress
then t* should be fairly close to T. Thus when t¥ stays close to
T one should conclude that break-in has not yet ended. However,
when T becomes bigger than t* and as T continues to grow, then
t* begins to recede and becomes remote from T and when this
phenomena is noted one should conclude that break-in is over.
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5. CONCLUSIONS

Even with a bare minimum of assumptions about the
distributions of times between failures some progress can be
made in attempting to determine when a breaking-in process has
terminated. The tests presented should be exerclsed with some
simulated data in order to better understand how they perform
and how they compare to one another. This 1is especially necessary
since the generality of the problem has so far prevented any exact
evaluation of the distributions or moments of these tests.

ﬂéz;bu4~al‘€211{:24Lﬁ
1033-BJdM-jr B. J. McCabe
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